首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5467篇
  免费   507篇
  国内免费   1篇
  2023年   24篇
  2022年   22篇
  2021年   132篇
  2020年   83篇
  2019年   113篇
  2018年   119篇
  2017年   104篇
  2016年   172篇
  2015年   316篇
  2014年   327篇
  2013年   405篇
  2012年   490篇
  2011年   478篇
  2010年   281篇
  2009年   248篇
  2008年   353篇
  2007年   325篇
  2006年   297篇
  2005年   327篇
  2004年   300篇
  2003年   253篇
  2002年   216篇
  2001年   46篇
  2000年   32篇
  1999年   43篇
  1998年   48篇
  1997年   29篇
  1996年   28篇
  1995年   21篇
  1994年   37篇
  1993年   21篇
  1992年   26篇
  1991年   24篇
  1990年   14篇
  1989年   14篇
  1988年   8篇
  1987年   12篇
  1986年   18篇
  1985年   10篇
  1984年   21篇
  1983年   7篇
  1982年   10篇
  1980年   11篇
  1979年   10篇
  1978年   9篇
  1977年   25篇
  1976年   12篇
  1974年   6篇
  1972年   8篇
  1971年   7篇
排序方式: 共有5975条查询结果,搜索用时 453 毫秒
71.
The Triassic–Jurassic boundary (Tr–J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr–J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr–J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr–J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy.  相似文献   
72.
Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits) and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals.  相似文献   
73.
Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to ‘atypical’ situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the ‘fast to forgive, slow to anger’ (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another''s mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: ‘fast to forgive, and slow to retaliate’. However, for severely unfair offers (90:10) the intuitive and fast response is to always reject.  相似文献   
74.
Decreasing dietary sodium intake, which can be achieved by reducing salt content in food, is recommended. Salt contributes to the taste of foods and makes them more enjoyable. Whether a food is liked or disliked is an important determinant of food intake, especially among children. However, the role of salt in children''s food acceptance has received little attention. The impact of salt content on children''s hedonic rating and intake of two foods was investigated in children. Using a within-subject crossover design, we recruited 75 children (8–11 years) to participate in five lunches in their school cafeteria. The target foods were green beans and pasta. The added salt content was 0, 0.6 or 1.2 g/100 g. The children''s intake (g) of all lunch items was measured. The children provided their hedonic rating of the food, a preference ranking and a saltiness ranking in the laboratory. Children could rank the foods according to salt content, and they preferred the two saltier options. A food-specific effect of salt content on intake was observed. Compared to the intermediate level (0.6 g salt/100 g), not adding salt decreased green bean intake (−21%; p = 0.002), and increasing the salt content increased pasta intake (+24%; p<0.0001). Structural Equation Modeling was used to model the relative weights of the determinants of intake. It showed that the primary driver of food intake was the child''s hunger; the second most important factor was the child''s hedonic rating of the food, regardless of its salt content, and the last factor was the child''s preference for the particular salt content of the food. In conclusion, salt content has a positive and food-specific effect on intake; it impacted food preferences and intake differently in children. Taking into account children''s preferences for salt instead of their intake may lead to excessive added salt.  相似文献   
75.
The adsorption of chiral Gly‐Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM‐RAIRS) and X‐ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly‐Pro molecules are present on Cu(110) in their anionic form (NH2/COO) and adsorb under a 3‐point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low‐energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H‐bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface. Chirality 27:411–416, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
76.
Short-chain fatty acids can be produced under anaerobic conditions by fermentative soil microbes and have nematicidal properties. We evaluated the effects of butyric and propionic acids on death and recovery of stunt nematodes (Tylenchorhynchus spp.), a common parasite of turfgrass. Nematodes in a sand-soil mix (80:20) were treated with butyric or propionic acid and incubated under air or N₂ for 7 days at 25 °C. Amendment of soil with 0.1 and 1.0 µmol (8.8 and 88 µg) butyric acid/g soil or 1.0 µmol (74 µg) propionic acid/g soil resulted in the death of all nematodes. The composition of the soil atmosphere had no effect on the nematicidal activity of the acids. Addition of hydrochloric acid to adjust soil pH to 4.4 and 3.5 resulted in nematode mortality relative to controls (41% to 86%) but to a lesser degree than short-chain fatty acids at the same pH. Nematodes did not recover after a 28-day period following addition of 10 µmol butyric acid/g soil under air or N₂. Carbon mineralization decreased during this period, whereas levels of inorganic N and microbial biomass-N remained constant. Short-chain fatty acids appear to be effective in killing Tylenchorhynchus spp. independent of atmospheric composition. Nematode mortality appears to be a function of the type and concentration of fatty acid and soil pH.  相似文献   
77.
The numbers of type I and type II aldosterone receptors in the kidney cytosol of adrenalectomized rats were estimated after animals were treated with various steroids, or fed with high or low potassium diets. Oestradiol and 5 beta-pregnane-3,20 dione, which exhibited no affinity for aldosterone receptors, did not modify the levels of type I or type II receptors. Cortisol, corticosterone, progesterone and spirolactones, which all competed with aldosterone for both types of receptor, reduced the number of type I sites, as does aldosterone itself. Steroid treatment has no appreciable effect on type II receptors. We conclude that type I receptors are modulated by steroids able to bind to aldosterone receptors and that steroid-receptor interaction is an essential step in the receptor modulation process. The effects of potassium on aldosterone receptor modulation were tested in adrenalectomized rats on hypo- or hyperkalaemic diets. No change in receptor levels was observed in the rats on a low potassium diet, but the number of type I receptors increased in animals on a high potassium diet. However, the effects of potassium on receptor modulation were of lesser magnitude than those of aldosterone agonists and antagonists.  相似文献   
78.
79.
Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease‐induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955–2018) across extant marine mammals (n = 129) in relation to key life‐history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%–21%), with 72% (n = 36; 95% CI 56%–84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%–41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus‐induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2 = 9.6, p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2 = 19.85, p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43, p = 2.7e‐04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28, p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.  相似文献   
80.
Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico‐ and nanophytoplankton biomass in coastal areas. Among the pico‐fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico‐ and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light‐harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega‐3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition‐related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号